A
Problem description
模拟一个哈希表,打出第一个冲突的位置 若不冲突,打出-1
Data Limit:2 ≤ p, n ≤ 300 Time Limit: 1s
Solution
纯模拟,还有不要忘了打-1,没了.
Code
#includeint n,i,j,p,x;bool h[10001];int main(){ scanf("%d%d",&p,&n); for (i=0;i<=10000;i++)h[i]=false; for (i=1;i<=n;i++) { scanf("%d",&x); if (h[x%p]) { printf("%d",i); return 0; }else h[x%p]=true; } printf("%d",-1); return 0;}
B
Problem description
给出一个字符串(只有小写字母),在其中插入k个小写字母使字符串的价值最大 价值:每个字母有自己的价值,所有字母的价值与其位置乘积的总和为字符串的价值
Data Limit:s (1 ≤ |s| ≤ 10^3)k (0 ≤ k ≤ 10^3).. Time Limit: 1s
Solution
很容易发现只要把价值最大的字符放k个在末尾即可,没有坑.
Code
var n,i,j,max,ans:longint; s:ansistring; ch:char; m:array['a'..'z']of longint;begin readln(s); readln(n);max:=-100000; for ch:='a' to 'z' do begin read(m[ch]); if max
C
Problem description
给出n个数,求最长连续上升字段长,可以有一次修改一个数的机会
Data Limit:1 ≤ n ≤ 10^5 Time Limit: 1s
Solution
贪心一下,有许多情况比较麻烦,详见代码
Code
#includeint n,i,j,used,ans=1,t,l,last;int a[1000000];bool bo,b[1000000];int main(){ scanf("%d",&n); for (i=1;i<=n;i++)scanf("%d",&a[i]);a[n+1]=-10000000; t=1;l=1;last=a[1];bo=false; while (t last) { t++;l++;last=a[t]; }else { t++;l++;last+=1;bo=true; used=t; } }else { if (a[t+1]>last) { t++;l++;last=a[t]; }else { t=used; if (ans last) { t++;l++;last=a[t]; }else { t++;l++;last+=1;bo=true; used=t; } }else { if (a[t+1]>last) { t++;l++;last=a[t]; }else { t=used; if (ans last) { t++;l++;last=a[t]; }else { if (a[t+1]-a[t-1]>=2&&!b[t]) { b[t]=true;t++;l++;last=a[t];bo=true; used=t-1; } else { t++;l++;last+=1;bo=true; used=t; } } }else { if (a[t+1]>last) { t++;l++;last=a[t]; }else { t=used; if (ans
D
Problem description
n*m的数字矩阵,要刚好操作k次,以及系数p。每次操作可以获得一行或一列的数的和的价值,然后把该行或该列的每个数减p 求获得的价值最大为多少?
Data Limit:1 ≤ n, m ≤ 10^3; 1 ≤ k ≤ 10^6; 1 ≤ p ≤ 100 1 ≤ aij ≤ 10^3 Time Limit: 2s
Solution
枚举0到k,求出在列和行上分别操作i次的最大价值 可以用优先队列优化(刚刚才知到) 然后枚举i表示在行上操作i次,此时在列上操作k-i次 此时答案为r[i]c[k-i]-qi*(k-i) 求最大值即可
Code
#include#include #include using namespace std;priority_queue sr,sc;long long n,i,j,m,p,jianr,jianc,k,kk;long long a[2000][2000],row[2000],column[2000],r[2000000],c[2000000];long long ans=0;int main(){ scanf("%lld%lld%lld%lld",&n,&m,&k,&p); ans=-1e18; for (i=1;i<=n;i++) for (j=1;j<=m;j++) { scanf("%lld",&a[i][j]); row[i]=row[i]+a[i][j]; column[j]=column[j]+a[i][j]; } sort(row,row+n+1); sort(column,column+m+1); for (i=1;i<=n;i++) sr.push(row[i]); for (i=1;i<=m;i++) sc.push(column[i]); int topc=m,topr=n;kk=k; for (i=1;i<=k;i++) { long long mx=sr.top();sr.pop(); r[i]=r[i-1]+mx; sr.push(mx-p*m); mx=sc.top();sc.pop(); c[i]=c[i-1]+mx; sc.push(mx-p*n); } for (i=0;i<=k;i++) if (r[i]+c[k-i]-i*(k-i)*p>ans)ans=r[i]+c[k-i]-i*(k-i)*p; printf("%lld",ans);}
E
Problem description
维护一个数组,支持两种操作 1,区间加斐波那契数列 2,区间求和
Data Limit:1 ≤ n, m ≤ 300000 Time Limit: 4s
Solution
用线段数做可以用前两个数标记加的斐波那契数列 可以预处理出每个数由几个第一个数+几个第二个数组成 再前缀和,就能O(1)求出一段斐波那契数列和了
Code
#include#include #include #include #define MAX 300007using namespace std;typedef long long LL;int n,m,a[MAX];const LL mod = 1e9+9;LL fib[MAX];struct Tree{ int l,r; LL sum,f1,f2; }tree[MAX<<2];void push_up ( int u ){ tree[u].sum = tree[u<<1].sum + tree[u<<1|1].sum; tree[u].sum %= mod;}void build ( int u , int l , int r ){ tree[u].l = l; tree[u].r = r; tree[u].f1 = tree[u].f2 = 0; if ( l == r ) { tree[u].sum = a[l]; return; } int mid = l+r>>1; build ( u<<1 , l , mid ); build ( u<<1|1 , mid+1 , r ); push_up ( u );}void init ( ){ fib[1] = fib[2] = 1; for ( int i = 3 ; i < MAX ; i++ ) { fib[i] = fib[i-1] + fib[i-2]; fib[i] %= mod; }}LL get ( LL a , LL b , int n ){ if ( n == 1 ) return a%mod; if ( n == 2 ) return b%mod; return (a*fib[n-2]%mod+b*fib[n-1]%mod)%mod;}LL sum ( LL a , LL b , int n ){ if ( n == 1 ) return a; if ( n == 2 ) return (a+b)%mod; return ((get ( a , b , n+2 )-b)%mod+mod)%mod;}void push_down ( int u ){ int f1 = tree[u].f1; int f2 = tree[u].f2; int l = tree[u].l; int r = tree[u].r; int ll = (l+r)/2-l+1; int rr = r-(l+r)/2; if ( f1 ) { if ( l != r ) { tree[u<<1].f1 += f1; tree[u<<1].f1 %= mod; tree[u<<1].f2 += f2; tree[u<<1].f2 %= mod; tree[u<<1].sum += sum ( f1 , f2 , ll ); tree[u<<1].sum %= mod; int x = f1 , y = f2; f2 = get ( x , y , ll+2 ); f1 = get ( x , y , ll+1 ); tree[u<<1|1].f2 += f2; tree[u<<1|1].f2 %= mod; tree[u<<1|1].f1 += f1; tree[u<<1|1].f1 %= mod; tree[u<<1|1].sum += sum ( f1 , f2 , rr ); tree[u<<1|1].sum %= mod; } tree[u].f1 = tree[u].f2 = 0; }}void update ( int u , int left , int right ){ int l = tree[u].l; int r = tree[u].r; int mid = l+r>>1; if ( left <= l && r <= right ) { tree[u].f1 += fib[l-left+1]; tree[u].f1 %= mod; tree[u].f2 += fib[l-left+2]; tree[u].f2 %= mod; int f1 = fib[l-left+1], f2 = fib[l-left+2]; tree[u].sum += sum ( f1 , f2 , r-l+1 ); tree[u].sum %= mod; return; } push_down ( u); if ( left <= mid && right >= l ) update ( u<<1 , left , right ); if ( left <= r && right > mid ) update ( u<<1|1 , left , right ); push_up ( u );}LL query ( int u , int left , int right ){ int l = tree[u].l; int r = tree[u].r; int mid = l+r>>1; if ( left <= l && r <= right ) return tree[u].sum; push_down ( u ); LL ret = 0; if ( left <= mid && right >= l ) { ret += query ( u<<1 , left , right ); ret %= mod; } if ( left <= r && right > mid ) { ret += query ( u<<1|1 , left , right ); ret %= mod; } return ret;}int main ( ){ init ( ); scanf ( "%d%d" , &n , &m ) ; for ( int i = 1; i <= n ; i++ ) scanf ( "%d" , &a[i] ); build ( 1 , 1 , n ); while ( m-- ) { int x,l,r; scanf ( "%d%d%d" , &x , &l , &r ); if ( x == 1 ) update ( 1 , l , r ); else printf ( "%lld\n" , query ( 1 , l , r ) ); } return 0;}